Temperature and timescale dependence of protein dynamics in methanol : water mixtures.

نویسندگان

  • Alexander L Tournier
  • Valerie Réat
  • Rachel Dunn
  • Roy Daniel
  • Jeremy C Smith
  • John Finney
چکیده

Experimental and computer simulation studies have suggested the presence of a transition in the dynamics of hydrated proteins at around 180-220 K. This transition is manifested by nonlinear behaviour in the temperature dependence of the average atomic mean-square displacement which increases at high temperature. Here, we present results of a dynamic neutron scattering analysis of the transition for a simple enzyme: xylanase in water : methanol solutions of varying methanol concentrations. In order to investigate motions on different timescales, two different instruments were used: one sensitive to approximately 100 ps timescale motions and the other to approximately ns timescale motions. The results reveal distinctly different behaviour on the two timescales examined. On the shorter timescale the dynamics are dictated by the properties of the surrounding solvent: the temperature of the dynamical transition lowers with increasing methanol concentration closely following the melting behaviour of the corresponding water : methanol solution. This contrasts with the longer (ns) timescale results in which the dynamical transition appears at temperatures lower than the corresponding melting point of the cryosolvent. These results are suggested to arise from a collaborative effect between the protein surface and the solvent which lowers the effective melting temperature of the protein hydration layer. Taken together, the results suggest that the protein solvation shell may play a major role in the temperature dependence of protein solution dynamics.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Investigation of Monte Carlo, Molecular Dynamic and Langevin dynamic simulation methods for Albumin- Methanol system and Albumin-Water system

Serum Albumin is the most aboundant protein in blood plasma. Its two major roles aremaintaining osmotic pressure and depositing and transporting compounds. In this paper,Albumin-methanol solution simulation is carried out by three techniques including MonteCarlo (MC), Molecular Dynamic (MD) and Langevin Dynamic (LD) simulations. Byinvestigating energy changes by time and temperature (between 27...

متن کامل

Energy study at different solvents for potassium Channel Protein by Monte Carlo, Molecular and Langevin Dynamics Simulations

Potassium Channels allow potassium flux and are essential for the generation of electric current acrossexcitable membranes. Potassium Channels are also the targets of various intracellular controlmechanisms; such that the suboptimal regulation of channel function might be related to pathologicalconditions. Realistic studies of ion current in biologic channels present a major challenge for compu...

متن کامل

Clustering dynamics in water/methanol mixtures: a nuclear magnetic resonance study at 205 k<T<295 k.

Proton nuclear magnetic resonance (1H NMR) experiments have been performed to measure the spin-lattice, T1, and spin-spin, T2, relaxation times of the three functional groups in water/methanol mixtures at different methanol molar fractions (XMeOH=0, 0.04, 0.1, 0.24, 0.5, 1) as a function of temperature in the range 205 K<T<295 K. The measured relaxation times in the mixtures, at all the methano...

متن کامل

Molecular dynamics simulation of interaction of Melittin and DMPC bilayer: Temperature dependence

The interaction between proteins and membranes has an important role in biological pro-cesses.We have calculated energies of interaction between Melittin and DMPC bilayer in differenttemperatures. We have used the CHARMM software for MD simulation under the canonical (N,V, E) ensemble at different temperatures. The computations have shown that water moleculeshave more penetration into the bilay...

متن کامل

A Thermodynamic Study of Complex Formation between 15-Crown-5 with Mg2+, Ca2+, Sr2+ and Ba2+ in Acetonitrile Methanol Binary Mixtures Using Conductometric Method

The complexation reactions between Mg2+, Ca2+, Sr2+ and Ba2+ metal cations with 15-crown-5 (15C5) were studied in acetonitrile (AN)-methanol (MeOH) binary mixtures at different temperatures using conductometric method. 15C54 forms 1:1 complexes with Mg2+, Ca2+ and Sr2+ cations in solutions. The Ma2+ cati...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Physical chemistry chemical physics : PCCP

دوره 7 7  شماره 

صفحات  -

تاریخ انتشار 2005